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Infection of cervical keratinocytes by high-risk HPV is in-
volved in the etiology of cervical carcinoma. Since viral prod-
ucts are immunogenic, development of cancer may require
suppression of immune responses directed against infected
epithelial cells. Many markers of host immune effector re-
sponses decrease as cervical intraepithelial neoplasia
progresses. Among these is epithelial cell expression of the
chemokine MCP-1, though the mechanism for its suppres-
sion is unclear. Here, we show that the E6 and E7 viral
oncogenes from high-risk HPV, individually and together,
suppress MCP-1 expression in primary epithelial cells derived
from the female genital tract. This is not a consequence of
global suppression of chemokine expression since other che-
mokines, including IP-10, IL-8 and RANTES, were less af-
fected. Furthermore, 4 of 6 HPV-positive cervical carcinoma
cell lines did not express MCP-1. Our data indicate that
suppression of MCP-1 expression is part of the program of
high-risk HPV E6/E7-induced transformation of primary epi-
thelial cells. These observations are consistent with a model
in which MCP-1 expression by infected keratinocytes, which
would stimulate an immune attack on HPV-transformed
cells, is suppressed for invasive cervical cancer to appear.
© 2003 Wiley-Liss, Inc.
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HPVs are etiologically involved in carcinoma of the uterine
cervix. Among the nearly 90 HPV serotypes isolated to date, a
subset of high-risk viruses has been found in over 90% of human
cervical cancers.1 These include HPV16 (detected in 50% of
tumors), HPV18, HPV31 and HPV33. The products of the viral
oncogenes E6 and E7 from high-risk viruses have been implicated
in carcinogenesis because their expression is sufficient for the
immortalization of primary human keratinocytes in vitro.2–4 E6
targets p53 for ubiquitin-mediated degradation, while E7 binds and
inactivates the product of the tumor-suppressor gene Rb.5,6

Despite this efficient program for inactivating tumor-suppressor
proteins, development of cervical carcinoma is a multistep process
for which E6 and E7 are necessary but not sufficient. Other genetic
changes are required, which may be a consequence, in part, of the
chromosomal instability produced by expression of these onco-
genes.7 In addition, however, the host can mount an immune
response against HPV, which keeps the infection in a clinically
latent state, and this latency must be overcome for cervical cancer
to appear.1,8–10

Very little is known about the regulation of the immune re-
sponse directed against HPV-infected epithelial cells. Although
epithelial cells can present antigen and release proinflammatory
cytokines when activated,11–14 there is little or no inflammation at
the site of primary HPV infection,8 and the few inflammatory cells
that are present appear not to be activated.15 In addition, as
epithelial dysplasia worsens during progression toward cervical

carcinoma, the cervical mucosa is gradually depleted of macro-
phages, T cells and Langerhans cells.16 These observations suggest
that HPV is capable of suppressing the host’s immune and inflam-
matory responses to viral infection and transformation.

One of the earliest cellular responses to injury or infection is the
release of chemokines, which are low m.w. chemoattractant pro-
teins that elicit local infiltration of inflammatory and immune
cells.17 The chemokine MCP-1 is particularly relevant in the
setting of viral infection because of its ability to attract monocytes,
memory T cells and NK cells in vivo.18 However, even though
MCP-1 expression is induced after infection by a variety of RNA
and DNA viruses, MCP-1 expression is suppressed after epithelial
cell infection by HPV in vitro.19 This parallels the situation in vivo,
where advancing cervical intraepithelial neoplasia is associated
with loss of MCP-1 expression.20

The mechanisms responsible for HPV-mediated suppression of
MCP-1 expression are unclear. The present study was undertaken
to examine the effects of HPV E6 and E7 on chemokine expression
by primary epithelial cells of the reproductive tract. Surprisingly,
we found that viral oncogenes selectively render MCP-1 unrespon-
sive to induction by proinflammatory cytokines and that this re-
fractoriness is also seen in most cervical carcinoma cell lines. Our
results suggest that suppression of MCP-1 may be a common and
important mechanism that shields developing cervical carcinomas
from the immune system.
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MATERIAL AND METHODS

Cell culture and cytokines

Primary human vaginal keratinocytes, ectocervical keratino-
cytes, endocervical epithelial cells and foreskin keratinocytes were
purchased from Clonetics (San Diego, CA) and cultured in serum-
free KGM (Clonetics) supplemented with 5 �g/ml insulin, 0.1
ng/ml hEGF and 30 �g/ml bovine pituitary extract (referred to as
complete KGM) and penicillin/streptomycin. HPV16 E6/E7 im-
mortalized cells were derived from a different set of primary
cells21 and denoted VK2 (vaginal), Ect1 (ectocervical), and End1
(endocervical). HFKs expressing E6 or E7 alone were derived
from the foreskin keratinocytes of 4- to 5-year-old donors. Cells
were infected with amphotropic retroviruses carrying the E6, E7 or
E6/E7 open reading frames of HPV16.22 These cells were main-
tained in K-SFM (GIBCO BRL Life Technologies, Gaithersburg,
MD) supplemented with 30 �g/ml bovine pituitary extract, 0.1
ng/ml hEGF, penicillin, streptomycin and 0.4 mM CaCl2. Cervical
carcinoma cell lines, including HeLa, SiHa, C33a, C4-1, Caski and
MS751 (ATCC, Manassas, VA), were maintained in DMEM
(GIBCO BRL) containing 10% BCS, penicillin and streptomycin.
Cervical carcinoma cell lines ME180 and HT-3 (ATCC) were
maintained in McCoy’s 5a medium (GIBCO BRL) containing
10% BCS and penicillin/streptomycin. PBMCs were isolated from
heparinized human blood using Ficoll-Hypaque (Pharmacia, Pis-
cataway, NJ). TNF-�, IFN-� and IL-1� were obtained from R&D

Systems (Minneapolis, MN). Cell proliferation was measured as
PD, defined as log2(number of cells at subculture/number of cells
plated).23

Preparation of retroviral stocks and retroviral infection

Amphotropic packaging cell lines (PA317) transfected with
LXSN, LXSN-HPV16-E6, LXSN-HPV16-E7 and LXSN-HPV16-
E6/E7 were purchased from the ATCC and grown in DMEM
supplemented with 10% BCS. Conditioned media were collected,
filtered and used to infect primary keratinocytes, which were
selected in 100 �g/ml G418.

ELISA

Cells were seeded in the appropriate medium at a density of 106

cells/100 mm dish. After 24 hr, cells were placed in low serum for
an additional 24 hr, then stimulated with recombinant human
cytokines for 24 hr. Conditioned media were collected, and che-
mokine secretion was measured using commercially available
ELISA kits (R&D Systems) according to the manufacturer’s in-
structions. Abs for the IP-10 ELISA were obtained from R&D
Systems (capture, catalog MAB266; detection, catalog AF-266-
NA). The concentrations of the capture and detection Abs were 4
�g/ml and 100 ng/ml, respectively. The biotinylated detection Ab
was quantified using streptavidin-conjugated horseradish peroxi-
dase, followed by orthophenylenediamine and color development.

FIGURE 1 – Chemokine secretion by human keratinocytes immortalized by HPV16 E6/E7. HFKs; vaginal (Vk), ectocervical (Ect) or
endocervical (End) epithelial cells; and immortalized derivatives (from other donors) expressing HPV16 E6/E7 (HFK/E6/E7, Vk/E6/E7,
Ect/E6/E7 and End/E6/E7) were untreated or treated with TNF-� (50 ng/ml), IFN-� (50 ng/ml) or IL-1� (50 ng/ml) for 24 hr. Supernatants were
harvested and chemokine expression levels determined by ELISA. Error bars indicate the SD of duplicate measurements. This experiment is
representative of 2. (a) MCP-1. (b) IP-10. (c) IL-8. (d) RANTES. White bar, no treatment; gray bar, TNF-�; black bar, IFN-�; hatched bar, IL-1�.
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RNase protection assay

Total cellular RNA was isolated using RNeasy (Qiagen, Hilden,
Germany). Multiple template set hCK5 was purchased from
Pharmingen (San Jose, CA). DNA templates were used to synthe-
size probes incorporating �-[32P]UTP (3,000 Ci/mmol; Life Sci-
ence Products, Boston, MA) using T7 polymerase. Hybridization
with 15 �g of each target RNA was performed overnight followed
by digestion with RNase A and T1 according to the manufacturer’s
protocol. Samples were treated with a proteinase K–SDS mixture,
extracted with phenol:chloroform:isoamyl alcohol (50:49:1) and
then precipitated with ethanol in the presence of ammonium ace-
tate. Samples were loaded on a 5% acrylamide-urea sequencing gel
next to the labeled probes and electrophoresed at 50 W in 0.5 �
TRIS-borate/EDTA buffer. The gel was dried and exposed to
X-ray film.

Northern blot analysis

Total RNA was purified from subconfluent cells using RNeasy,
and 8 �g were fractionated by electrophoresis through a 1.2%
agarose/2.2 M formaldehyde gel in 3-[N-morpholino]propane sul-
fonic acid/EDTA buffer. RNA was transferred to nylon filters
(Nytran; Schleicher & Schuell, Dassel, Germany) in 10 � SSC

(1 � SSC is 0.15 M NaCl/0.015 M sodium citrate, pH7) using a
TurboBlotter (Schleicher & Schuell) and crosslinked using a Str-
atalinker (Stratagene, La Jolla, CA). cDNA probes for MCP-1,
IP-10, IL-8, RANTES, HPV16 E6/E7 and �-actin were radiola-
beled with �-[32P] dCTP (3,000 Ci/mmol, Life Science Products)
by random primer labeling (High Prime; Boehringer-Mannheim,
Mannheim, Germany). Hybridization was carried out in Ex-
pressHyb hybridization solution (Clontech, Palo Alto, CA) under
stringent conditions. A CTACK cDNA probe was prepared by
RT-PCR from primary HFKs after isolation of total RNA by
RNeasy. The sequence for the sense primer was GGAA-
GAGTCTAGGCTGAGCA and that of the antisense primer, GC-
CCATTTTCCTTAGCATCC.

RESULTS

Chemokine expression in epithelial cells in the presence and
absence of HPV E6/E7

HFKs, vaginal and ectocervical keratinocytes and endocervical
epithelial cells were tested for expression of 4 chemokines in-
volved in innate and/or adaptive immune responses (Fig. 1). Under
the culture conditions used here, all cells constitutively secreted

FIGURE 2 – Induction of chemokine mRNA expression in primary human keratinocytes. Normal HFKs and HPV16 E6/E7-immortalized
primary vaginal (Vk), ectocervical (Ect) and endocervical (End) epithelial cells were either left untreated or treated with TNF-� (50 ng/ml),
IFN-� (50 ng/ml) or IL-1� (50 ng/ml) for 24 hr. Cellular RNA was isolated and analyzed by Northern blotting using the indicated probes.
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low to undetectable amounts of MCP-1, IP-10 and RANTES and
moderate amounts of IL-8. However, cytokine treatment induced
high levels of expression of all 4 chemokines. In particular, IFN-�
induced abundant MCP-1, IP-10 and RANTES secretion, while
TNF-� and IL-1� were better inducers of IL-8.

To determine whether high-risk HPV E6/E7 suppresses chemo-
kine expression, we examined cells of similar origin that were
immortalized by retroviral transduction of HPV16 E6/E721 and
maintained in culture for �120 PD. As shown in Figure 1a, none
of these cells secreted detectable levels of MCP-1 in response to
IFN-�, which was a potent inducer of MCP-1 in cells that do not
express E6/E7. Nonetheless, all of the E6/E7-expressing cells
secreted IP-10 in response to IFN-� (Fig. 1b), indicating that they
had functional IFN-� receptors and that at least some signal-
transduction pathways from this receptor were intact. Similarly,
secretion of IL-8 and RANTES in response to IFN-�, TNF-� or
IL-1� was suppressed to a much lesser extent or not at all by
E6/E7 expression (Fig. 1c,d). This provides further evidence for
the specific suppression of MCP-1 by E6/E7.

Like the ELISA results in Figure 1, the Northern blots in Figure 2
show that E6/E7-transduced cells cannot express MCP-1 mRNA in
response to cytokine treatment. Again, however, IP-10 mRNA can be

induced by IFN-� and, to a lesser extent, by TNF-�, as can the mRNA
encoding CTACK, a keratinocyte-derived chemokine involved in the
trafficking of T lymphocytes to mucocutaneous sites.24 Thus, the
specific suppression of MCP-1 by E6/E7 is exerted at the level of
mRNA expression. All experiments using these primary cells were
performed at least twice, with similar results.

Complete suppression of MCP-1 requires prolonged culture
after E6/E7 transduction

To determine whether the effects of E6/E7 on MCP-1 expres-
sion were immediate, HFKs were examined at various times after
E6/E7 transduction. HFKs were infected with LXSN-E6/E7 at
approximately 33 PD. Figure 3 shows that at 45 PD (approx. 3
weeks after transduction and G418 selection), a small amount of
MCP-1 mRNA expression could be induced in response to IFN-�.
At 83 PD, a trace signal of IFN-�-inducible MCP-1 mRNA ex-
pression was still present. Not until 138 PD was MCP-1 expression
undetectable after IFN-� treatment. This gradual loss of MCP-1
inducibility was not an artifact related to persistence of cells
uninfected by retrovirus since selection for G418 resistance was
complete within 5 PD after transduction. Furthermore, the level of
E6/E7 transcription in untreated cells did not increase from 45 PD

FIGURE 3 – Chemokine mRNA expression with continued proliferation after HPV16 E6/E7 expression. HFKs were transduced to express
HPV16 E6/E7 at 33 PD. After the indicated number of PD, RNA was harvested and analyzed by Northern blotting.
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onward. Again, specificity for MCP-1 was demonstrated by similar
levels of IP-10 mRNA expression induced by IFN-� at all pas-
sages. Analysis of chemokine secretion from these cells showed
that levels of MCP-1 and IP-10 protein in conditioned medium

corresponded to levels of mRNA expression (Fig. 4). Notably,
suppression of inducible MCP-1 expression could be achieved by
expression of either E6 or E7 alone as well as the combination of
both viral oncogenes (Fig. 5).

FIGURE 4 – Chemokine secretion by human keratinocytes with continued passage after HPV16 E6/E7 expression. HFKs were infected with
LXSN- or LXSN-expressing HPV16 E6/E7. After the indicated PD, cells were either left untreated or treated with IFN-� (50 ng/ml) for 24 hr.
Supernatants were harvested and concentrations of MCP-1 (a) and IP-10 (b) measured by ELISA. Error bars indicate the SD of duplicate
measurements. This experiment is representative of 2.
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Chemokine expression in cervical carcinoma cell lines

To determine whether patterns of E6 and/or E7 suppression of
chemokine expression in primary cells transduced in culture also
occurred in HPV-associated tumors, several cervical carcinoma
cell lines were examined. Figure 6 shows that some cell lines
constitutively transcribed chemokine mRNA. In particular, HeLa
cells expressed MCP-1, SiHa and C4-1 cells expressed RANTES
and Caski and HT-3 cells expressed IL-8. (HFKs expressed no
chemokine mRNAs constitutively, but in response to IFN-� they
transcribed IP-10 and MCP-1 predominantly and RANTES to a
lesser extent.)

Figure 7 shows a more thorough examination of MCP-1, IP-10,
IL-8 and RANTES secretion in response to cytokines. Consistent
with the results in Figure 6, only HeLa cells expressed MCP-1
protein constitutively, and secreted amounts were not increased by
treatment with TNF-�, IFN-� or IL-1�. Of the other 7 cervical
carcinoma cell lines tested, only SiHa showed inducible MCP-1
expression in response to IFN-�. Thus, only 2 of 8 lines expressed
constitutive or inducible MCP-1. In contrast, 5 of 8 lines secreted
abundant IP-10 in response to IFN-�. Most of the cell lines, except
for C33a, also expressed IL-8 or RANTES in response to cytokine
induction. All but 2 of these cell lines, C33a and HT-3, are
HPV-positive, so these results generally corresponded to chemo-
kine expression patterns observed in E6- and/or E7-expressing
primary cells.

DISCUSSION

We examined patterns of chemokine expression by epithelial
cells of the female reproductive tract and found that primary
vaginal, endocervical and ectocervical cells express MCP-1, IP-10,
IL-8 and RANTES in response to inflammatory cytokines. After
transduction of both E6 and E7 from high-risk HPV, however,
these cells no longer expressed MCP-1 in response to any inducer
but were still able to express other chemokines. Selective loss of
MCP-1 expression was also observed in 4 of 6 HPV-positive
cervical carcinoma cell lines, though this must be interpreted with
caution because of potential differences between these cell lines
and authentic cervical carcinomas. MCP-1 expression by HeLa
cells in our study contradicts earlier reports.19 Although the lineage
history of the HeLa culture we examined may differ from that used
in the earlier study, the HPV genome is still present in the cells we
tested (data not shown) and their ability to secrete MCP-1 is
unexplained. Nonetheless, in primary epithelial cells, the correla-
tion between E6/E7 expression and suppression of MCP-1 is
complete.

Interpretation of these data is somewhat limited by the fact that
the E6/E7-transduced and nontransduced cells did not come from
the same individuals; therefore, differences in genetic background
may have accounted for disparities in MCP-1 expression. How-
ever, the 4 nontransduced cells came from 4 independent donors as
did the 4 transduced cells, and the patterns of MCP-1 expression
and suppression are consistent across all lines. This suggests that

FIGURE 5 – MCP-1 mRNA expression is suppressed in HFKs by E6 or E7 alone as well as E6/E7 in combination. HFKs were infected with
LXSN- or LXSN-expressing HPV E6, E7, or E6/E7 as described in Material and Methods and tested for IFN-�-induced chemokine mRNA
expression by Northern blotting.
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suppression of MCP-1 expression by E6 and E7 is a generalizable
phenomenon that is independent of specific genetic background.

The mechanisms underlying suppression of inducible MCP-1
transcription are only partly understood. Finzer et al.25 docu-
mented a DNase hypersensitive site in a 3� domain that contains an
AP-1 binding motif and showed that the composition of the trans-
acting heterodimer that binds to this site differs between cells that
do and do not express MCP-1. Another possible mechanism is
based on analysis of differences between upstream promoter re-
gions of MCP-1 and IP-10. In the MCP-1 gene, a 5� domain AP-1
binding site overlaps an SP-1 binding GC box,26–28 but the GC box
is absent from the IP-10 promoter.28 Since this site is important for
IFN-�-inducible MCP-1 expression, disruption of this transcrip-
tional control element by E6 and E7 might differentially affect
MCP-1 and IP-10 expression, as observed in the present report.
Any such outcome must be the result of concerted effects by E6
and E7 together since either viral oncogene alone could not sup-
press MCP-1 expression. Determining whether this is a direct
result of Rb and p53 inactivation as opposed to other activities of
E6 and E7 will be the focus of future studies.

Regardless of mechanism, our data indicate that expression of
E6 and E7 did not immediately result in MCP-1 suppression (Figs.

3, 4). While it is possible that this is a consequence of the
persistence of E6/E7-negative cells in culture, cells had been
transduced 3 weeks prior to the analysis at 45 PD. The selective
pressure of G418 in the medium and the proliferative advantage
imparted by E6/E7 expression make this unlikely and suggest that
these viral oncogenes are necessary but not sufficient for MCP-1
suppression. On the one hand, this may simply be a reflection of
heterogeneity in the effectiveness of oncogene-mediated inhibition
of expression, which becomes uniform with continued serial pas-
sage. On the other hand, it may reflect fundamental changes that
occur during progression toward immortalization or during the
development of the fully transformed phenotype. In this regard,
one possible mechanism for the eventual suppression of MCP-1 is
that the chromatin of the MCP-1 locus gradually undergoes re-
modeling by DNA methylation or histone deacetylation when E6
and E7 are expressed. However, treatment of E6/E7-expressing
cells with 5-aza-2�-deoxycytydine or trichostatin A did not restore
MCP-1 expression (data not shown). Thus, it is more likely that
additional genetic, rather than epigenetic, changes occur in cells
containing high-risk HPV oncogenes and that one of the conse-
quences of these changes is loss of MCP-1 expression. Further-
more, there are almost certainly other pathways to MCP-1 sup-

FIGURE 6 – Chemokine mRNA expression by cervical carcinoma cell lines. Cells were grown under standard conditions as described in
Material and Methods. RNA was isolated and analyzed for chemokine expression by RNase protection assay.
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pression that do not involve E6/E7 since some of the cervical
carcinoma cell lines that do not express MCP-1 also do not express
HPV oncogenes, e.g., C33a and HT-3.29

The selective loss of MCP-1 expression after E6/E7 trans-
duction may have important implications for the pathogenesis
of cervical carcinoma. MCP-1 is a potent chemoattractant for
monocytes, macrophages and NK cells, all of which could be
involved in the host’s immunologic response to HPV-infected
cervical epithelium.18 Gene transfer experiments have also
shown that MCP-1 can produce an immunologically specific
cytotoxic response against syngeneic tumors in vivo.30 Suppres-
sion of MCP-1 secretion would blunt these responses and give
infected cells sufficient time to accumulate additional genetic
changes necessary for the development of invasive carcinoma.
Our findings may explain the absence of a vigorous inflamma-
tory response to primary HPV infection in humans as well as
the gradual loss of immune cells from the cervical stroma
during the progression of cervical intraepithelial neoplasia8,16

since most of these infiltrating cells express the primary MCP-1
receptor, CCR2.

Our results support the general notion that immunotherapy may
be particularly effective in carcinoma of the cervix. As noted by

others, the presence of viral products in these cells would lead to
the expression of tumor antigens,31 and a cell-mediated immune
response to high-risk E6/E7 protein products has been suggested to
protect against advancing disease.32 It is likely that suppression of
MCP-1 was evolutionarily selected precisely to render cells ex-
pressing these neoantigens less susceptible to host recognition. The
targeting of MCP-1 by high-risk HPV is an indication that this
chemokine may be particularly important in the host response to
infected cells. Restoring MCP-1 expression locally, by genetic or
direct protein application methods or by including it in a thera-
peutic tumor vaccine, may specifically enhance host antitumor
effector mechanisms.
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